
The Department of Housing and Urban

Development

Service Layered

Architecture Profile

(SLAP)
Version 1.0

<Date>

<System Name>

P a g e | 2

Solution Information

Information

Solution Name

Solution Acronym

Project Cost Accounting

System (PCAS) Identifier

Document Owner

Primary Segment Sponsor

Version/Release Number

Document History

Version No. Date Author Revision Description

Note: The latest version of this document supersedes all previous versions.

P a g e | 3

Table of Contents

Document History .. 2

Introduction .. 5

Architecture Guidance Disclaimer .. 5

Background ... 6

Investment Selection Information ... 6

HUD Business Architecture and Loan Review Process Requirements .. 6

Enterprise Architecture Guidance ... 6

Scope 9

Audience 9

Purpose 10

Document Conventions .. 10

Architecture Recommendation Summary ... 10

Case Management Capability ... 10

Case Management Market Analysis ... 11

Architectural Recommendations for Implementing the XYZ Application ... 11

Recommendation 1: Cloud First - XYZ SHALL Be Developed as a Custom-Built Open-Source Solution
Deployed To Azure Cloud ... 13

The HUD Open-Source Application Technology Profile .. 13

Open-Source Reference Implementation Architecture .. 14

Recommendation 2: OCIO will provide Development/Test as a Service (DTaaS) 16

Recommendation 3: XYZ SHALL Be Implemented in Accordance With HUD Layered Service
Architecture .. 17

XYZ Specification Architecture .. 18

Service Layer Examples ... 20

Recommendation 4: XYZ SHALL Employ Design Best Practices ... 25

Model/View/Controller design pattern .. 25

Intended use of JMS and MuleSoft ESB .. 25

Rules Engine .. 25

Transaction Management ... 26

System Monitoring .. 26

Logging 26

Development/Test as a Service (DTaaS) ... 26

Test Automation ... 27

Recommendation 5: XYZ SHALL Reuse Existing Utility Services ... 28

Recommendation 6: Integrate with the Following HUD Systems .. 29

P a g e | 4

Recommendation 7: XYZ Shall Use HUD ESB .. 30

Recommendation 8: XYZ SHALL Use HUD EDW for Data Warehouse Needs ... 31

Recommendation 9: XYZ Shall Align To HUD CARS Data Model ... 32

Recommendation 10: XYZ SHALL use ICAM solution to implement application security 33

References .. 34

Appendix A: HUD Layered Service Architecture Guidance ... 35

Appendix B: HUD Enterprise Nonfunctional Requirements .. 38

Appendix C: XYZ Specification and Deployment Views ... 39

Appendix D: XYZ Logical Data Model .. 49

Appendix E: Agile Development ... 53

Appendix F: Acronym and Definitions ... 57

P a g e | 5

Introduction

The nature of software development and government acquisitions makes it expensive and inefficient to correct

projects and their application architectures after they have been developed. Department of Housing and Urban

Development (HUD) has adopted a proactive process that allows for prescriptive architecture guidance prior to

acquisition activities. This approach ensures that HUD receives full value from their investments. The architecture

guidance provided for each selected investment is the result of a detailed review of the investment and its

enterprise implications. This document provides the Service Layered Architecture Profile (SLAP) for the Loan

Review System (XYZ) and includes architecture requirements and recommendations for XYZ.

The guidance in this document has been derived from a number of sources grouped into the following three

categories:

1. Investment Selection Information – Provides the rationale for investing in XYZ.

2. HUD Business Architecture and Loan Review Process Requirements – Specific requirements of

the loan review business process and related HUD business processes.

3. Enterprise Architecture Guidance – Architecture standards and best practices HUD has adopted

to ensure a flexible and responsive portfolio of systems that can be cost-effectively maintained

and operated.

During the HUD investment review process, XYZ went through a Pre-Select phase in which a number of acquisition

and technology decisions were made in light of the HUD existing portfolio of systems, the Enterprise Technical

Architecture volumes (ETA), and the state of the IT marketplace. The outcome of the Pre-Selection process

includes recommendations to create a custom-built solution, developed predominantly with open-source

technologies.

The guidance in this document assimilates the XYZ investment rationale, the HUD business architecture and XYZ

system requirements and the architecture recommendations from the investment review pre-select phase and

introduces technologies that have been demonstrated, implemented, and validated under the Loan Review System

Proof of Concept (XYZ PoC). The architecture for XYZ has been elaborated sufficiently to present a series of

architectural and design recommendations in this Service Layered Architecture Profile.

Architecture Guidance Disclaimer

The Enterprise Architecture Team is committed to an architecture approach centered on enablement

before enforcement. If at any time the architectural constraints prescribed here-in are not sufficiently

enabled to meet the Program schedule, the HUD Architecture Waiver Process may be employed. The

HUD Enterprise Technical Architecture was instituted to consolidate architectural and design guidance at HUD. This

guidance will evolve, and periodic changes to the guidance will ensue as institutional experience applying these

best practices provides feedback to HUD EA on a project-by-project basis. The purpose of the guidance is to

simplify HUD’s portfolio of applications; ensure interoperability; secure HUD systems; protect citizen’s privacy;

promote reuse; and improve information assurance.

If you find that this guidance is hindering your solution development, please contact Enterprise Architecture

(EnterpriseArchitecture@Hud.Gov). Enterprise Architecture has established both a waiver process and an

architecture change process to allow project teams to adjust their architecture compliance to an appropriate level

for each project. The architecture change process allows program and project teams to influence the enterprise

P a g e | 6

architecture by making recommendations for technology, product and standards insertion into the EA or for

presenting other recommendations to improve the enterprise architecture. Please do not hesitate to contact

enterprise architecture with any recommendations, questions or concerns.

Background

This section provides background information on XYZ for each of the three categories listed above.

Investment Selection Information

The background presented here is an excerpt from The Department of Housing and Urban Development, DME

Activity Summary: Access to Credit with XYZ.

 “The Access to Credit initiative mitigates some of the deleterious and lingering effects that resulted in the housing

market from the subprime mortgage crisis, global economic meltdown, and subsequent economic recession. This

initiative directly supports the following HUD Strategic Goals:

● SG1: Strengthen the nation’s housing market to bolster the economy and protect

consumers

● SG3: Use housing as a platform to improve quality of life

● SG4: Build strong, resilient and inclusive communities

The primary IT objective of this project [XYZ] is to enable the implementation of FHA’s new defect taxonomy and

methodology for evaluating underwriting defects as the foundational component of XYZ. FHA will refine the way

loans are assessed for manufacturing defects, linking defect severity to the outcome of the defect while also

providing transparency into the source and cause of the defect. This new basis for rating loans will be used

consistently when performing a variety of loan reviews including post-endorsement technical reviews and on-site

mortgagee monitoring reviews. FHA’s goal is to have a single-issue trigger, a single defect code, and have the

severity level and cause of defect indicated in the [defect] code.” [1]

HUD Business Architecture and Loan Review Process Requirements

HUD undertook a loan review business process reengineering effort that competed in October 2015. A subsequent

effort to define the requirements in a format suitable for initiating an agile development effort produced

approximately 60 user story descriptions in November 2015. These work products and their associated references

were the primary sources of information in this category that were considered in the development of the XYZ

SLAP. The documents referenced include:

 HUD Loan Review System Business Process Reengineering Results: Loan Review Current Business Process.

 HUD Loan Review System Business Process Reengineering Results: Loan Review Target Business Process.

 HUD Loan Review System Requirements.

In addition, the references identified in the business process and requirements’ documents were also analyzed on

an as-needed basis. These included a review of the relevant HUD forms and the documents that make-up the loan

review binder.

A follow-up effort to refine the XYZ requirements is currently underway. The XYZ SLAP will be revised to reflect the

results of this requirements effort once it is complete.

Enterprise Architecture Guidance

HUD OCIO architecture guidance and standards is a collection of recommendations, processes, models, reviews,

and governance best practices. HUD architecture management processes are designed to ensure that all HUD IT

P a g e | 7

investments are selected, architected, acquired, implemented, deployed and maintained in congruency with HUD

OCIO architectural guidance.

HUD investments are reviewed by the HUD OCIO Chief Architect to ensure alignment and interoperability with the

HUD Enterprise Architecture. Enterprise Architecture reviews the intended outcomes of each investment to

identify opportunities including, but not limited to, the following:

 Advance HUD’s transition to a simplified portfolio of systems.

 Provide immediate savings through consolidation of investments in similar capabilities.

 Provide near-term savings by leveraging assets within HUD’s current IT portfolio.

 Incorporate modular designs to ensure flexibility.

 Standardize technology to reduce the number of HUD’s technology and product dependencies.

Today, HUD spends an inordinate amount of its IT budget on maintenance and operations. Investment in, and

commitment to, architecture is necessary to systematically improve the maintainability and manageability of

HUD’s applications portfolio. HUD architectural guidance integrates industry best practices into a comprehensive

resource for all application development efforts. The architectural guidance is continuously improved.

Exhibit 1 – HUD Architecture Guidance Resources lists architecture guidance resources relevant to XYZ

implementation. The following list is not exhaustive, and other architecture guidance may also apply:

Name / Title Description
POC or Universal Resource

Locator (URL) Address

XYZ Business Process

Model and

Requirements

Draft business process model developed by EA

(Oct 2015) and supporting User Stories drafted

in (Nov 2015).

EnterpriseArchitecture@Hud.Gov

Project Portfolio

Management (PPM)

The Department of Housing and Urban

Development's (HUD's) Project Planning and

Management (PPM) Life Cycle V2.0 provides

practical approaches to optimize innovation,

minimize schedule and budget risk, and better

plan and execute projects.

http://portal.hud.gov/hudportal/

HUD?src=/program_offices/cio/pp

m/PPMV20Artifacts

Security For information regarding application security

requirements please contact the HUD Chief

Information Security Officer.

HUD Chief Information Security

Officer

Enterprise Technical

Architecture Version

(ETA) 1.1

The HUD ETA documents outline layered and

tiered architecture principles and standards for

developing modern applications. This document

provides an overview of the HUD ETA, the

layers of that architecture, the security required

to safeguard it, and the infrastructure required

to operate it. This document is pertinent to

application and system stakeholders.

EnterpriseArchitecture@Hud.Gov

Common Application

Relational Schema

(CARS)

The Common Application Relational Schema

(CARS) logical data model is the Enterprise Data

Model for HUD. The purpose of the CARS model

EnterpriseArchitecture@Hud.Gov

P a g e | 8

Name / Title Description
POC or Universal Resource

Locator (URL) Address

is to define the data needed by HUD to fulfill

the organization’s mission using a methodology

to allow the model to be used by new

development projects to establish the

foundation of the data model and data base.

HUD Cascading Style

Sheet

A Cascading Style Sheet template that may be

used for development of websites and web-

based applications.

http://portal.hud.gov/hudportal/d

ocuments/huddoc?id=hudapril.css

Exhibit 1 – HUD Architecture Guidance Resources

P a g e | 9

To ensure that the architecture recommended in this XYZ SLAP is appropriately modified to better support XYZ

solution delivery without denuding the enterprise value designed into these recommendations, there must be

extensive collaboration between the XYZ Program, the XYZ Implementation Team and Enterprise Architectural

Design Services (ADS). Consistent, daily or weekly, engagement between the teams is anticipated.

In the spirit of enabling compliance, Enterprise Architecture

will supply the XYZ implementation team with:

 A development environment and a test environment

in Azure that includes developer workstation virtual

machines (VM) and application server VMs that

have the software prescribed herein preinstalled.

 An executable architecture framework for the XYZ

solution that is consistent with all recommendations

presented in this SLAP.

 Pre-integration of available enterprise services.

 Guidance for elaborating and extending the HUD

standard architecture in support of XYZ solution

delivery.

Collectively, these development aids will speed solution

delivery and help facilitate compliance with HUD architecture

guidance.

Scope

The scope of the XYZ SLAP is the XYZ investment and related

software development. This document does rely heavily on

the loan review business process reengineering effort and

subsequent requirements’ definition effort. Changes to the

target loan review business process and requirements will

likely impact this XYZ SLAP requiring commensurate changes

to bring this document back into alignment with business

needs.

Audience

The primary audience for this document is the lead

architect for any team proposing to implement the

XYZ system. Other stakeholders that may find

value in the XYZ SLAP include:

 HUD & FHA executives and management

 Application development managers

 Contractors considering submitting proposals to

implement the XYZ system

 HUD OCIO Staff that have a role to play in support

 Government oversight organizations

HUD Reference
Architecture Clarification

HUD’s architecture strategy
warrants some clarification
because it consists of two layered
architectures intended to dovetail
with each other. The first is the
Enterprise Technical Architecture
(ETA) which lays out guidelines
for developing three tiered
applications. The tiers included
are the Presentation Layer, the
Business Logic Layer and the Data
Access Layer. The guidance
documented in the ETA applies to
applications, specifically custom-
built open-source applications.

The second architecture is The
HUD Layered Service
Architecture (see Appendix A:
HUD Layered Service
Architecture Guidance). This
architecture identifies the layers
of an enterprise service
architecture designed to enable
reuse and the management of
enterprise services. This
architecture applies to integrating
applications. Design patterns for
implementing services for each
layer are included later in this
guidance.

P a g e | 10

Purpose

The purpose of this document is to provide architecture guidance for the upcoming XYZ implementation

effort. This document prescribes architecture guidance in the form of recommendations. This document

provides the architectural blueprint for development of the XYZ application and a framework for future

enhancements and maintenance.

Document Conventions

This document prescribes architecture for XYZ implementation and employs the following conventions to

differentiate between mandatory guidance and recommendations.

Mandatory Compliance: These guidelines are identified by the keywords "MUST", "MUST NOT", "REQUIRED",

"SHALL", "SHALL NOT". Exceptions require a waiver and a transition plan.

Recommended use: These guidelines are identified by the keywords "SHOULD", “RECOMMENDED”, "SHOULD

NOT", “NOT RECOMMENDED”. These guidelines describe a preferred alternative as judged by HUD EA. Deviation

should only be on a limited use and justified by the circumstances.

Architecture Recommendation Summary

System Summary Statement: HUD has established a standard defect taxonomy to simplify and clarify feedback to

lenders. The business domain is the management of loan cases and XYZ will automate parts of the loan case

review process. The solution requires integration with other HUD systems to retrieve loan and lender data.

Complex business rules are employed to support the loan selection process, loan assignment process and to map

results to the defect taxonomy.

Case Management Capability

The central capability of XYZ is Case Management. The core aspects of Case Management are document

management, collaboration, reporting, workflow management and security. However, the workflow and lifecycle

are relatively simplistic. The complexity in XYZ lies in other areas, specifically in the following:

 Automating the application of the defect taxonomy to improve the consistency and transparency of loan

review results.

 The application of a complex set of business rules to pre-select loans across 9 process areas/categories

that meet varying criteria.

 The ability to assess the Home Ownership Center’s (HOC) worker skills and qualifications to review

different categories and subtypes of loans requires sophisticated rules’ management.

 The ability to interoperate/interface with other HUD systems requires integration design patterns and

data transformations.

 Providing a control panel for the National Coordinator and a dashboard for other executives that provides

a holistic view of the current year loan review progress.

Furthermore, HUD has over 70 case management systems within its portfolio. Most of these case

management systems are implemented using different COTS products. During the investment review pre-

select phase, it was determined that none of these systems should be leveraged to support implementation of

the Loan Review System. Instead, the decision was made to implement an open source, custom built solution

for the loan review system in order to establish a standard HUD case management platform.

P a g e | 11

Case Management Market Analysis

The Case Management arena is filled with hundreds of software products with varying degrees of specialization.

This market space has not yet undergone consolidation. As a result, there is a high risk that any off-the-shelf

product selected could be jeopardized as the market place consolidates. Most likely, products selected will not

survive the anticipated longevity of the investment, which can span more than a decade. Furthermore, the COTS

products available do not address the primary areas of complexity for the loan review process. Extensive

configuring, hand-coding of business rules and tailoring of COTS software would be required to implement XYZ.

Today, we have already identified approximately 70 systems at HUD that implement Case Management

capabilities. XYZ provides an opportunity to implement a simple, open source case management capability at HUD.

Once implemented, this low-cost alternative may be extended to support other programs, driving consolidation of

some of the case management systems at HUD onto a standardized platform and thereby eliminating many of the

unnecessary and costly technology and product dependencies related to these programs.

The following table lists the recommendations from the ADS team for building out and deploying an XYZ

application in a HUD environment. As a proof of concept, the XYZ application is being built out by the HUD

OCIO/EA/ADS team, based on the architecture recommended in this document, and it is being readied for

demonstrations to OCIO in late Jan/early Feb 2016.

Architectural Recommendations for Implementing the XYZ Application

Exhibit 2 - Recommendations for XYZ Applications presents an overview of the architecture guidance for

XYZ implementation. Each recommendation is elaborated in a subsequent section.

Recommendation Rationale Notes

1 XYZ SHALL Be Developed

As A Custom-Built Open

Source Solution Deployed

To The Azure Cloud

Open Source software provides a low-cost, low-risk

alternative to proprietary software. HUD seeks to

establish a standardized, managed DevOps

environment to speed delivery and reduce the cost of

custom-built solutions.

This option provides maximum flexibility to HUD in

terms of maintenance & operation of the system as

business rules and needs change over the years.

HUD OCIO has already made

the investment to establish

the open-source architecture.

2 OCIO will provide

Development/Test as a

Service (DTaaS)

The XYZ project will have direct access to and the

support of the Enterprise Architectural Design Services

team and the HUD CI/CD team to facilitate the use of

the provisioned environment. This will expedite

delivery of a quality XYZ solution.

Expedite delivery by enabling solution team to start

work on Day 1.

Improved system quality due

to the automated continuous

testing capabilities inherent in

the HUD CI/CD environment.

Reduced total cost of

ownership as result of

improved system quality.

3 XYZ SHALL Be

Implemented In

Accordance With The HUD

Layered Service

Architecture

Establishing interfaces that align with HUD’s Enterprise

Capability Model and HUD’s Layered Service

Architecture will provide investment and technology

flexibility in the future, simplify HUD’s application

portfolio, and provide assets that can be extended for

enterprise reuse and consolidation.

Positions capabilities

developed for XYZ to easily

identified and reused in

support of subsequent

projects.

P a g e | 12

Recommendation Rationale Notes

4 XYZ SHALL Employ Design

Best Practices

Employing consistent design patterns simplifies

downstream integration and provides higher degrees of

information assurance.

The ADS team will provide sample executable code and

an application framework that demonstrates the

anticipated use of these design patterns for XYZ.

Expected to reduce out-year

maintenance and support

costs

5 XYZ SHALL Employ Utility

Services

As part of custom code development, expose utility

services securely as REST based APIs so that other

applications do not have to rewrite the business logic.

They can simply invoke the RESTful services and

perform the desired operation.

Expected to reduce out-year

maintenance and support

costs

6 XYZ SHALL Integrate With

The Following known HUD

Systems. List will be

updated as final scope and

business requirements are

delivered to OCIO.

CHUMS, LEAP, AARTS, SFHEDW

Please see Error! Reference source not found..

The XYZ solution will provide reusable integration

patterns for accessing these systems.

These interfaces will be

factored in to the cost of any

XYZ solution.

7 XYZ SHALL Use HUD ESB HUD has selected MuleSoft’s Enterprise Service Bus

(ESB) and established a policy that all applications will

utilize the ESB for systems integration.

Will reduce the impact of

change between systems

integrated using the ESB.

8 XYZ SHALL Use HUD EDW

For All Data Warehouse

Needs

The data warehouse will provide reliable and consistent

data for the enterprise. This will eliminate

inconsistencies between isolated views of data that can

come from reporting on individual subsystems.

The Enterprise Architecture

Enterprise Data Warehouse

team will implement any

reporting and data

warehousing requirements

for the XYZ solution.

9 XYZ SHALL Align To HUD

CARS Data Model

The Common Application Relational Schema (CARS)

logical data model is the enterprise data model for

HUD. Alignment to the CARS model and its

methodology and design approach will ensure data

quality, adhere to consistent business rules, and

institutionalize HUD data standards.

The Enterprise Architecture

Enterprise Data team will

develop CARS data model

which will be used by XYZ

solution.

10 XYZ SHALL use ICAM

solution to implement

application security

ICAM solution (TBD) will be used for HUD partners and

HUD PIV personnel to authenticate and authorize into

the applications.

The Enterprise Architecture

team recommends

integrating with existing ICAM

Solution (infrastructure) but

build out ICAM functionality

to standards so that there is

easy migration to another

platform/solution down the

road.

Exhibit 2 - Recommendations for XYZ Applications

The following sections will address each recommendation in more detail.

P a g e | 13

Recommendation 1: Cloud First - XYZ SHALL Be Developed as a

Custom-Built Open-Source Solution Deployed To Azure Cloud

HUD is committed to establishing the capability to reliably deliver custom-built open-source solutions.

These solutions provide a lower cost of entry than traditional proprietary software. These solutions also

reduce the chance that software products become obsolete due to vendor acquisitions or bankruptcies.

Furthermore, employing open-source technologies ensures that HUD will always have open access to the source

code that supports their solutions without any of the licensing constraints or risks associated with proprietary

software products. As business rules and needs change over the years, this option will provide maximum flexibility

to HUD in terms of the maintenance and the operation of the system.

Furthermore, HUD has made an initial investment in Cloud infrastructure-as-a-service. This initial investment in MS

Azure SHALL provide the target operating environment for XYZ.

The HUD Open-Source Application Technology Profile

HUD Enterprise Architecture has identified the application technology profile presented in Exhibit 3 -

Application Technology Profile Overview for XYZ.

Technology Product Name

Java Java 8

Application Build Maven

Database Oracle

Data Access Layer Hibernate

Application Server/Web Server Tomcat

Business Service (Integration Layer) Mule

BPMN/Workflow Software Acitiviti

Message Queue Software (Async) TBD

Rules Management Drools

User Interface HTML/AngularJS/Bootstrap/JQuery

Operating Systems Linux

Document Storage Software MongoDB

Exhibit 3 - Application Technology Profile Overview

HUD has already invested in establishing a working proof-of-concept of this application technology profile. The

proof-of-concept has been tailored to support XYZ. The proof-of-concept will be structured as an executable

reference implementation and will be provided to the application development contractor as a jump-start.

P a g e | 14

Open-Source Reference Implementation Architecture

HUD EA is working to provide a tested reference

implementation architecture to the XYZ application

development team. The reference implementation

architecture will be delivered in the form of code, how-to

documentation, javadocs and services as example. All these

deliverables will be available in git repository and will be

handed off during the onboarding process for XYZ

implementation team. The reference implementation is

iteratively developed and incrementally delivered during the

architecture runway1.

Speeds Delivery - Will be used to jump-start solutions that fit

a prescribed profile by providing a working (executable)

framework for the solution as a starting point.

Reduces Risk - Reduces architectural complexity for solution

architects by standardizing solutions to object relational

mapping, referential integrity and other architectural

challenges.

Simplifies Development - Pre-Integrating standard utility

services /components such as authentication, authorization,

error handling, audit logging etc.

Promotes Congruent System Boundaries – Consistent separation of concerns enables reuse and more effective

team organization.

The HUD architecture process includes continuous engagement with the EA team for designated projects. During

this period, HUD ADS will define key architectural user stories to be addressed during the architecture runway. The

1 Architectural Runway provides the technology and architecture enablement necessary for timely, uninterrupted

development of new features. This enablement is achieved by ensuring that the affected elements — components,

functions, protocols, internal system functions, etc. have the capabilities necessary to support the near-term

features on the product roadmap.

To support continuous high delivery velocity, architectural runway needs to be continuously maintained and

extended. Enterprise Architecture team builds and extends Architecture Runway to assure continuous investments

in enablers. Product/Solution Management together with Architects in collaboration with the business teams,

define many of these architectural initiatives, but implementation is the responsibility of the Agile Release Trains.

While providing the enablement for near term delivery success, architectural runway should not over-constrain the

development with long-range technical commitments. “Just the right amount” of architectural runway is required.

Too much, and the architecture over-constrains the teams and is too disconnected from the current context; too

little and the teams will have trouble reliably making and meeting near term commitments.

Continuously extending the architectural runway, exploring and preserving design options, and supporting

Adaptive Requirements and Design increases the organization’s ability to respond to technology and business

challenges.

Exhibit 4 - Value Proposition for HUD

Solution Delivery

P a g e | 15

ADS team will maintain continued, regular engagement with the project teams through multiple reviews, code

validation and through consultancy on architectural issues.

P a g e | 16

Recommendation 2: OCIO will provide Development/Test as a Service

(DTaaS)

HUD OCIO will provide Development and Test as a Service (DTaaS) in HUD Azure Cloud, this environment

includes the ability to automatically provide Developer Workstation Virtual Machines that have been

preloaded with the development products identified in Exhibit 5 - Development Environment

Technology Profile. It also includes the ability to largely automate the provisioning of application servers to

support Integration and test environments for project teams.

The following development environment technology profile presents the products that will be preconfigured in the

development and test environments for the XYZ application development team.

Technology Product Name

Java Java 8

IDE Spring Boot with Spring Tool Suite (STS)

Editors Notepad++

UI Development HTML/AngularJS/Bootstrap/JQuery

Database Tools SQL Developer

Application Build Maven

Database Oracle

Data Access Layer Hibernate

Application Server/Web Server Tomcat

Business Service (Integration Layer) Mule

BPMN/Workflow Software Acitiviti

Messaging Software (Asynchronous) TBD

Rules Management Drools

Testing Software Salinium, Geb, Mockito

Junit

Operating Systems Windows 7/8/10

Linux

Version Control Git

Document Storage Software MongoDB

Exhibit 5 - Development Environment Technology Profile

HUD EA CI/CD Team will provide support for the Development Test as a Services (DTaaS) environment.

P a g e | 17

Recommendation 3: XYZ SHALL Be Implemented in Accordance With

HUD Layered Service Architecture

HUD’s application portfolio simplification strategy is centered on management of the HUD Layered

Service Architecture. By ensuring that systems are congruent with a common capability model that

employs consistent rules for integration, OCIO can incrementally deliver a more flexible and responsive

application portfolio.

This section presents the results of mapping the XYZ business process model, user stories and requirements to the

HUD Enterprise Service Layered Architecture. The results are presented as a service architecture for XYZ that is

congruent with the ETA. This congruency is critical to enabling downstream consolidation around targeted

capabilities and also for reducing the cost of promoting XYZ solution modules to enterprise assets.

For information on the HUD Enterprise Service Layered Architecture, please refer to

P a g e | 18

Appendix A: HUD Layered Service Architecture Guidance.

XYZ Specification Architecture

The XYZ Specification Architecture presents a logical architecture that defines the optimal set of interfaces to be

implemented for best alignment with the HUD Layered Service Architecture. Enabling the architecture to flex at

these key interfaces will align the XYZ application points of flexibility with the model that the HUD investment

review board will be basing their decisions on.

The series of figures in Appendix D: XYZ Specifications present the specification view and deployment view for XYZ.

The specification figures were derived from the Loan Review System (XYZ) - To-Be Process Flows [5], the XYZ Demo

user-stories [6] and the HUD XYZ Demo Functionality [7].

A subsequent Loan Review System requirements effort is currently underway. The specification models presented

will require review and modification to reflect changes to the requirements that were the basis of the original

design effort.

The XYZ specification view presents a logical service-oriented architecture for XYZ. The specification view indicates

a collection of interfaces that can support the XYZ target business process and supporting requirements. The

specification model presented here was designed to support the loan review business process reengineering effort

that delivered a target architecture in October 2015 and the subsequent requirements elicitation effort that

delivered 53 user stories to support the target-state HUD enterprise loan review business process. The

specification architecture presented here is in compliance with HUD Layered Service Architecture.

P a g e | 19

Exhibit 6 – Overview of Loan Review System Specification Architecture

P a g e | 20

Exhibit 6 – Overview of Loan Review System Specification Architecture provides a top level view of the service

components specified to support the loan review system. Appendix C: XYZ Specification provides a dependency

diagram to support each of the major loan review process steps.

Service Layer Examples

The layered services architecture defines a layered framework for organizing enterprise services (see

P a g e | 21

Appendix A: HUD Layered Service Architecture Guidance). Each layer plays an important role in separating

enterprise concerns and project concerns and each layer has different management and operations requirements.

For example, the process layer is responsible for interacting with the UI components, and it acts as a controller or a

channel that routes requests to other service components within the architecture. Process Services orchestrate the

invocation of Capability Services and Core Data Services in order to fulfill requests from the User Interface. The

process layer also has access to a BPM Engine (Activiti) and a Rules Engine (Drools) to define the workflow and

business rules management that are frequently required by a Process Service. The service layer provides services

via HTTPS protocol in accordance with the M-15-13 document (full guidance at https://www.cio.gov).

This section presents example internal implementations for a Process Service, a Core Data Service and an

Underlying Service. For the purposes of XYZ, capability services may be implemented as process services.

Process Service Layer Example

Exhibit 7 – Example Process Layer Service Internal Design

Exhibit 8 – Description of Example Process Layer provides a description of each component in Exhibit 7 – Example

Process Layer Service Internal Design. This is a typical example of how a Process Layer component would be

packaged but it can be augmented with other components needed to meet a particular requirement. The Process

layer component is typically called from the UI or Presentation Layer.

Component Name Description

Solution Layer User interface components that may call Intake Case service.

Intake Case Channel Service An “XYZ REST Service” endpoint with operations exposed for use by the UI.

Intake CaseImpl The “XYZ Implementation Class” that implements the necessary business

logic that is needed for the Intake Case Channel Service.

ActivitiConnectorImpl A common “XYZ Implementation Class” that needs to be called for any

interaction with the BPM Activiti Engine. This Implementation class is

responsible for any caching and abstraction required by XYZ.

P a g e | 22

ActivitiEngine The Java API that Activiti exposes for the ActivitiConnectorImpl to consume.

DroolsConnectorImpl The common “XYZ Implementation Class” to be called for any interaction

with the Drools Rules Engine. This Implementation class is responsible for

any caching and abstraction that is needed specific for XYZ.

DroolsEngine This is the Java API that Drools exposes for the DroolsConnectorImpl to

consume.

Exhibit 8 – Description of Example Process Layer Service Internal Design

Core Data Service Layer Example

Exhibit 9 – Example Core Data Service Internal Design

Exhibit 10 –Core Data Service Internal Components provides a description of each component in Exhibit 9. This is a

typical example of how a Core Data service might be implemented and packaged. Core Data services components

are typically called from the User Interface, Capability or Process Service layers.

Component Name Description

InsureMortgage Java Class The “XYZ Implementation Class” that implements the business

logic for all the service operations that are exposed by the Intake

Channel REST service.

InsureMortgage DTO A “XYZ Java” or a POJO that holds the data obtained from a

persistent object (From the Database) after necessary

transformation.

Insure Mortgage DAO A “XYZ Java” or a POJO that contains methods to issue CRUD

operations against the XYZ database. This needs to be

P a g e | 23

implemented using Hibernate and requires integration with

Spring Boot.

XYZ Database The XYZ oracle database where the loan review data would

reside.

Exhibit 10 –Core Data Service Internal Components

Underlying Service Layer Example

Exhibit 11 – Example Underlying Service Internal Design

Exhibit 12 – Underlying Service Internal Components provides a description of each component in Exhibit 9 –

Example Core Data Service. This is a typical example of how the Underlying Services Layer component would be

packaged. The underlying services layer components are typically called from the Capability or the Core Data

services layer. The underlying services are packaged within a Mule ESB component that encapsulates the internal

details of accessing and transforming data from external systems.

Component Name Description

CHUMS REST Service This is a “HUD REST Service” endpoint with operations that

is exposed to the consumers of this service. In this case this

would be the Case Management capability layer service

component that will access this endpoint to query against

external systems.

Mule Engine The Mule Engine is the backbone of the underlying services

component that provides the EAI capabilities to integrate

with other HUD systems as well as external systems.

P a g e | 24

HUD ColdFusion Mule workflows typically have other sub flows and

supports development in via various scripting languages.

This is an example of a HUD ColdFusion component that

can be part of a Mule workflow.

HUD Java Mule workflows typically have other sub flows and

supports development in via various scripting languages.

This is an example of a HUD Java component that can be

part of a Mule workflow.

CHUMS WebService This is the legacy web service that the CHUMS system

provides to all HUD systems to access Loan data.

Exhibit 12 – Underlying Service Internal Components

P a g e | 25

Recommendation 4: XYZ SHALL Employ Design Best Practices

The market place is rife with guidance on industry best practices but it is difficult navigate between best

practices that are mutually compatible and can be supported by any given organization. Architecture

capability maturity, organizational culture and IT management practices influence the efficacy of best

practices that can be employed at HUD. When selecting the design best practices incorporated in this section

considerable thought was given to the environmental constraints above. In particular, we are seeking to employ

“state-of-the-practice” as opposed to “state-of-the-art”. We seek design guidance that is thoroughly proven in a

broad array of organizations and technology platforms.

Model/View/Controller design pattern

One of the most important design patterns that is recommended by ADS team is Model/View/Controller (MVC).

The MVC pattern is applied at the application architecture level and promotes effective separation of concerns for

the application components and subsystems. MVC consists of three kinds of objects - Model is the application

object, the View is its screen presentation, and the Controller defines the way the user interface reacts to user

input. There are many benefits of using MVC design pattern including ease of modification of UI as business needs

change.

The HUD ETA provides in-depth guidance for the use of MVC in a JAVA environment; however this does not

provide holistic guidance for the architecture prescribed for XYZ. As EA seeks to advance the enterprise target

architecture, EA will work with the XYZ implementation team to apply this pattern to the new application profile

prescribed in Exhibit 3 - Application Technology Profile Overview.

Intended use of JMS and MuleSoft ESB

XYZ will employ both Java Message Service (JMS) and MuleSoft Enterprise Service Bus (ESB). For asynchronous

messaging within XYZ application, it is recommended that JMS should be used to send/receive messages. For use

cases where XYZ needs to send/receive messages to/from other enterprise applications at HUD, it is recommended

that an Underlying Service be implemented as an Adaptor Design Pattern providing access to other system

functionality from within the XYZ application. See Exhibit 11 – Example Underlying Service Internal Design.

The Java Message Service (JMS) API is a Java Message Oriented Middleware (MOM) is terrible for synchronous

request-reply as it will fail slowly (i.e. wait for timeout) when the server is down. When a request is going to fail,

you want it to fail fast. A HTTP request to a REST based service will fail immediately (on the TCP connect) if the

server is down.

MOM is useful for asynchronous request-reply messaging, but then you'll be left with the problem of where to

store the state in-between the request and the reply (Hint: Your options are File or Regular Database,

the Message or a NoSQL Database). Often the extra implementation effort is not worth the perceived advantages

of asynchronicity. Also REST based services do support asynchronous requests if you really need it.

Rules Engine

A rules engine solution is overkill for many applications. Choose a rules engine if you can answer “Yes” to all of the

following questions:

 Does the algorithm involve significant conditional branching or decision making?

 Are 3 or more conditions present in the rules (i.e. are the rules complex)?

P a g e | 26

 Are the rules subject to periodic change and/or localization?

 Is the code to be maintained over time?

 Is performance not among the main driving concerns of the system?

 Can the project afford the cost and schedule of a rules solution? e.g., licensing,

training, projects must have a duration greater than a year for the ROI to pay off

 Rules are not intended to be used in a procedural manner

Transaction Management

XYZ will be built on idempotent principle, which means that repeated running of a transaction will not cause any

harm to the system. The database design will ensure that duplicate data is not written to the database. During a

transaction, if no errors are encountered, transaction data will be committed to the database. Otherwise, the

transaction will be rolled back, errors corrected, and the transaction will be tried again. Repeated occurrence of

error will be noted and the transaction will be marked as failed. The transaction will be managed in small

transaction boundaries.

System Monitoring

XYZ system will need monitoring by an enterprise class monitoring platform. If there are anomalies found during

day-to-day operations of the application, alerts will be sent out via emails, text messaging and phone calls to the

operations team and corrective action will be taken. The XYZ system will be designed for resiliency and will employ

high availability features of the Microsoft Azure Cloud to ensure a high degree of uptime for XYZ application and

proper monitoring of the system is an integral part of the LS resiliency strategy. Today, there is no HUD EA

standard open-source monitoring tools (e.g. Nagios) for solutions in the Azure Cloud. HUD EA will work with the

XYZ implementation team to determine the XYZ monitoring and instrumentation requirements and select the

appropriate monitoring tools.

Logging

HUD XYZ system SHALL provide Application Logging to log warnings, errors and access from XYZ application. Two

important aspects that logging helps with are: (a) code debugging and (b) reviewing application access trail (audit).

XYZ SHALL require Secure Auditing feature. Access logs need to be archived in a timely manner for auditing

purposes. This would mean tracking data to a transaction level. The logging mechanism SHALL provide ways to

“redact” Personally Identifiable Information (PII) from audit logs. Audit logging tools e.g. ELK stack can be used for

log viewing purposes – this will help O&M team in viewing the log information without logging to production

environment.

Development/Test as a Service (DTaaS)

XYZ Application will be developed and deployed in an agile manner using industry best practices and within the

Dev/Test as a service (DTaaS) environments provided by HUD OCIO; DTaaS are designed and configured to achieve

Continuous Integration/Continuous Delivery (CI/CD) using tools for:

o Infrastructure Automation

o Library & Dependency Management (Sona Type Nexus repository)

o Source Control (e.g. git)

o Developers Code Validation (SONAR)

P a g e | 27

HUD will provide properly configured DTaaS for all its development and integration to achieve CI/CD. Specific tools

are provided as examples only; the CI/CD team will refine the CI/CD platform as required.

Test Automation

The XYZ system SHALL undergo a series of tests, including but not limited to:

o Unit testing

o Functional Testing

o Performance Testing

o Security Testing

o Load Testing

The XYZ system will provided automated test scripts for integration with the CI/CD environment.

The products under consideration as HUD standards include the following:

o JUnit

o JMeter

o JMock

o Selenium

o Spock

P a g e | 28

Recommendation 5: XYZ SHALL Reuse Existing Utility Services

HUD EA will establish standard utility components for integration with the HUD Technology Profile.

Sourcing activities are underway but is unclear at this time which utility services will be in place and

available for use within XYZ. For utility components that have not been sourced in advance of XYZ implementation

the XYZ solution provider will be responsible for implementing the utilities. The minimum set of utility services

includes:

o Error and Exception Handling

o Audit Logging

o Authentication/Authorization

o Application Logging

o Email and Notification Services

P a g e | 29

Recommendation 6: Integrate with the Following HUD Systems

The following systems maintain data that is required by the Target-State Loan Review Business Process.

Exhibit 13 – XYZ Candidate System Interfaces

Candidate System Interfaces

1 Lender Electronic Assessment Portal (LEAP) FHA’s approximately 2,900 approved lenders use LEAP

for their annual recertification, and to execute post-approval business updates and changes.

2 Computerized Homes Underwriting Management System (CHUMS) processes single family mortgage

insurance applications, from initial receipt through endorsement. Various types of applications are

processed in CHUMS, including loans for First Time Homebuyers, Home Equity Conversion Mortgages

(HECM) a reverse mortgage available to the elderly to augment income, substantial rehabilitation of

existing properties, and VA Certified FHA loans. In addition to tracking and processing assistance, it

provides automated assistance in appraisal and mortgage credit evaluation.

3 Approval/Recertification/Review Tracking System (ARRTS) is a web-based application that provides

for tracking, management, and reporting of incoming lender application and recertification packages,

as well as tracking of workload related to compliance reviews performed on FHA approved lenders,

Office of Inspector General (OIG) audits, and referrals made to the Mortgagee Review Board.

4 The Single Family Housing Enterprise Data Warehouse (SFHEDW) is an ongoing, fully operational data

warehouse that is the key source of data for anyone who needs Single Family data. The integrated

data warehouse contains critical Single Family business data from sixteen (16) sources, mostly from

FHA Single Family automated systems.

5 The Active Partners Performance System (APPS) allows HUD's business partners to manage their

company and individual participation information and submit their APPS Previous Participation

Certification

6 FHA Connection gives approved FHA lenders real-time access to FHA systems. Applications available

through the FHA Connection include Single Family underwriting, default reporting, portfolio

management and others FHA programs.

P a g e | 30

Recommendation 7: XYZ Shall Use HUD ESB

The integration layer is a key enabler for a Service Oriented Architecture (SOA) because it provides the

capability to mediate, route, and transport service requests from the service requester to the correct

service provider. This layer enables the integration of services through the introduction of a reliable set of

capabilities; these include the following: modest point-to-point capabilities for tightly coupled endpoint integration

as well as more intelligent routing, protocol mediation, and other transformation mechanisms often provided by

an Enterprise Service Bus (ESB). Web Services Specifications via API Modeling Language specifies a binding, which

defines a physical location of an available service. An ESB, on the other hand, provides a location-independent

mechanism for integration.

The integration layer provides a level of indirection between the consumer of functionality and its provider. A

service consumer interacts with the service provider by way of the integration layer. As a result, each service

specification is only exposed through the integration layer (such as an ESB), never directly. Integration Layer

decouples consumers and providers, allowing for integration of disparate systems into new solutions. A key

recommendation from ADS team is to utilize HUD ESB for integration to ensure truly SOA for XYZ.

The ESB is a critical component for delivering HUD a manageable enterprise service architecture and is a key

component in establishing a more responsive application portfolio. Typical use of MuleSoft ESB is to provide

Protocol Transformation and Data Transformation when interfacing with other HUD systems or external systems.

P a g e | 31

Recommendation 8: XYZ SHALL Use HUD EDW for Data Warehouse

Needs

The enterprise data warehouse will become the unified source that holds all the business information of

the agency by making it accessible all across HUD. It will become the “single version of truth” for HUD.

The EDW will ensure that all the data is constantly available for analyzing, planning and reporting purposes. It will

impose a standard treatment of data and will grow with the business’s needs by adding classifications as they

emerge in the business model. Additionally, the EDW will provide full access to all the data in the Agency without

compromising the security or integrity of that data. Data will be organized such that it is amenable for ad-hoc

analysis by enabling business users to work directly with the data with little or no IT support. The EDW will also

allow for advanced reporting and analysis of multiple time-periods.

The benefits of the EDW include:

 Integrated Data – Standardized data, Enhanced Data Quality and Consistency

 Detailed/Summarized Data for various analytical needs

 Support flexible access for decision-makers – Allow for Slicing and Dicing the data

 Enhanced Business Intelligence – Convert data into insights and subsequently into data-driven actions

 Historical Intelligence

P a g e | 32

Recommendation 9: XYZ Shall Align To HUD CARS Data Model

The Common Application Relational Schema (CARS) logical data model is the Enterprise Data Model for

HUD. The purpose of the CARS model is to define the data needed by HUD to fulfill the organization’s

mission using a methodology to allow the model to be used by new development projects to establish the

foundation of the data model and data base.

The CARS’ modeling approach is to create a solution data model instead of a high-level logical data model which

has been traditionally created for Enterprise Logical data models. The CARS model methodology design approach

defines the entities, attributes and relationships that enable the data model and data base to:

 Ensure Data Quality

 Enforce Business Rules

 Enforce HUD data standards

Alignment to the CARS model and its methodology design approach by all the new development will establish a

standard data model that will enable easier data integration and enhance data quality and consistency.

P a g e | 33

Recommendation 10: XYZ SHALL use ICAM solution to implement

application security

XYZ application will fully integrate with the current Identity, Credentials and Access Management (ICAM)

platform and build to industry standards to allow the solution to seamlessly migrate to new and

enhanced ICAM platform in the future. ICAM cover the following features/capabilities:

 Authentication

 Authorization

 System to System access

 Services Security

ICAM product selection is underway and it is unclear whether these services will be available prior to

XYZ release. During XYZ implementation, the development team will work with the selected ICAM

vendor to implement above-mentioned features in XYZ application. If HUD ICAM is unavailable, XYZ will

integrate with WASS, FHAConnect and DIAMS for authentication of external and internal users

respectively.

For end-to-end secured communications, SAML assertions will be used as the standard approach.

None of the guidance in this document overrides application security guidance from the HUD Chief Information

Security Officer. If there is a conflict then guidance from HUD CISO takes precedence.

This section defines the requirements in several areas where architectural decisions have not been made or

product choices are not in place yet. Nonetheless, these are requirements for XYZ implementation team to

develop and deploy XYZ application. Product selection and details of implementation for these items will be

worked out and this document will be updated.

P a g e | 34

References

[1] Department of Housing and Urban Development, DME Activity Summary: Access To Credit With XYZ -

Appendix A – Initiative: Access To Credit; Project: Loan Review System (XYZ)/Quality Assessment

Methodology; Project Evidence Demonstrating Compliance to Statutory Condition 1. (FY2014)

[2] HUD Loan Review System Business Process Reengineering Results: XYZ Target Business Process.

[3] HUD Loan Review Process Requirements

[4] HUD ETA Documents

[5] Loan Review System (XYZ) - To-Be Process Flows 2015-11-06.doc

[6] XYZ -demo-userstories_v1.xls

[7] HUD XYZ Demo Functionality.ppt

P a g e | 35

Appendix A: HUD Layered Service Architecture Guidance

In a Service Layered Architecture, we classify services according to the type of capability they provide. By focusing

each service on a particular type of capability, it enables greater modularity and separation of concerns, enabling

them to be more easily shared or composed into new services. For example, core business services (entity) provide

operations focused on managing the information about a key business resource - like customers, orders, or

products. These are independent of the processes that use that information. Process services provide operations

that enable solution assemblers to interact with the different steps in the process. In turn, the process services

then consume the appropriate core business services.

In this way, Solution assemblers can change a process service, add new operations and such, or add new

processes, without impacting the core business services (data services). If we mix these capabilities together, we

run the risk for example that the entity information is only provided via a specific process. We see this often and

it's just too coarse grained and not a very agile approach. Business processes typically change more frequently

than the information the business needs to manage. Many different processes require information about the same

entity types and entities. To ensure our architecture is responsive to these change patterns, Core business services

often have broader scope of use than a single business process.

HUD-EAS recommends the following Service Layers for XYZ:

Architectural

Layer
A Service in this layer Guidance

Process Service

Layer

is designed to provide functions that support one

specific business process or sub-process. This service

SHOULD be independent from any particular user

interface design.

MUST be associated with one

Business Process or Subprocess, and

no other Business Modeling

Element.

Capability Service

Layer

is designed to support a particular business capability.

This service SHOULD be independent from any

particular business process.

MUST be associated with one

Business Capability and no other

Business Modeling Element.

Core Business

Service Layer

(data services)

is responsible for maintaining records about the

instances of particular set of business types. This service

SHOULD be independent from any particular business

process or business capability.

MUST be associated with one or

more Business Types, and no other

Business Modeling Element.

Utility Service

Layer

provides common or specialized operations that MAY

be consumed by any other business service.

MAY be associated with a Process,

Business Capability or Business Type

or Business Event in cases where

appropriate if helpful, but need not

be.

Underlying

Service Layer

SHOULD normally be hidden from solution developers,

since invocation is difficult or error-prone in some way.

For example, the operations are obscure, they are not

in the terminology used by your business, some

operations are inappropriate, the operations are highly

generic and could get used inconsistently. This service

MUST not be associated with any

business modelling element, but …

may be associated with one or more

Applications, which provide some of

the implementation of this service,

P a g e | 36

Architectural

Layer
A Service in this layer Guidance

can be “hidden” from solution developers by

“wrapping” it within higher level services, and making a

rule that solution software and process services do not

directly request operations of a service in this layer.

through the “provides

implementation” association.

XYZ Architecture Layer Rules

Layer: Main Role Operations are:
Dependencies

allowed:
More rules: Data Storage:

Solution Logic

(Presentation):

provides an effective

end-user experience

Non-existent - this

layer does not contain

services

May call Process,

Core Business &

Utility services

directly

Supplies user

interface, validation,

user messages,

session

management

Not normally,

except for

temporary session

data

Process Services

(Business):

Orchestrate other

services; apply

business process

rules.

UI-independent, but

designed for a specific

business process

May directly call

Core Business,

Underlying & Utility

services

May directly call

Core Business,

Underlying & Utility

services

Only where not

stored by Core

Business Services.

Stored data likely

more transient than

for Core Services

Business Capability

Services(Business):

Process independent

and Channel (UI)

independent

business services

UI- and business

process-

independent, so can

be used in different

contexts

May directly call

other Core

Business,

Underlying and

Utility Services

Cyclic dependencies

not normally

permitted, except

for “call-back”. May

not call Process

Services

Enforce Business

rules

Core Business

Services (Business

Entity):

Apply enterprise-

wide business rules

UI- and business

process-

independent, so can

be used in different

contexts

May directly call

other Core

Business,

Underlying and

Utility Services

Cyclic dependencies

not normally

permitted, except

for “call-back”. May

not call Process

Services

Maintain the

principal data and

enforce data

integrity rules

Utility Services

Highly reusable

services or those

employed to

standardize

technical

infrastructure or to

hide complex

UI-, business process-

and often domain-

independent

May call other

Utility Services

directly. Some may

use Underlying

Service.

Cyclic dependencies

not normally

permitted.

Often required —

for directories, look

up tables and audit

trails for example.

P a g e | 37

Layer: Main Role Operations are:
Dependencies

allowed:
More rules: Data Storage:

business

calculations

Underlying Services

(Integration)

difficult for solutions

developers to

consume correctly

Highly generic or

implementation-

leaking, so its

interface not ideal for

exposing to solution

developer

May call Utility

Services, but

normally would not

May not call Core

Business or Process

Services

Often maintain

significant data

stores, and core

services call

underlying services

P a g e | 38

Appendix B: HUD Enterprise Nonfunctional Requirements

See Excel Spreadsheet Attachment named for this appendix.

39

Appendix C: XYZ Specification and Deployment Views

Exhibit 6 is a Unified Modeling Language (UML) class diagram that depicts the services (classes stereotyped as

Service Specification) that participate in the XYZ. The services are arranged in different layers and these layers are

described in

40

Appendix A: HUD Layered Service Architecture Guidance. The associations between the services are not depicted in

this diagram, but are shown in other diagrams presented in this section.

The stereotypes used have two functions: The first function provides additional properties for documentation

purposes, and the second function provides the properties needed to generate implementation code from the

UML objects. The stereotypes used in the Specification Model are Service Specification and Service Operation

Specification. Listed below are the properties of each stereotype:

Service Specification - Defines the interface that the service offers.

Service Operation Specification – Defines the behavior of an operation offered by the service specification.

The notation for each stereotype attribute denotes the optionality and cardinality of the attribute. [1] means that

a value for the attribute must be present. [0..1] denotes an optional attribute. The notation [0..n] reflects an

optional attribute that may have up to “n” values. “*” denotes that there is no logical limit to the number of

occurrences of this attribute.

41

XYZ Intake Process Step – Specification View

42

Exhibit 6 – Overview of Loan Review System Specification Architecture is a class diagram that depicts the services

(classes stereotyped as Service Specifications) that participate in the Intake Process Step. The solution layer classes

are identified only to show the interaction of the Solution Layer with the rest of the Service Specifications. The

table below provides a description of each service depicted in the diagram and specified in the model.

Services Specified in the Intake Process Step

Service Specification Layer Description

Intake Process Process Controls, executes and tracks the business process. The Process Service

should be independent of any user interface or solution design.

Partner Management Capability Controls and tracks Partner (Lender) information.

Correspondence

Management

Capability Tracks and maintains correspondence which can be physical mailings or

electronic notices.

Insure Mortgages Capability Coordinates and tracks the activities associated with cases (mortgage

insurance).

Document Management Capability Tracks and maintains the documents associated with a case.

Intake and Ingestion Capability Provides the capability to receive documents in both physical and

electronic form.

Lender Application Core Data Stores, retrieves and validates data relating to the Lender’s cases.

Lender Core Data Stores, retrieves and validates data relating to the Lender.

Case Management Core Data Stores, retrieves and validates the case data.

Authentication Utility Validates that the user credentials are valid.

Authorization Utility Determines what functions a validated user is allowed to execute.

LEAP Underlying Provides an interface to LEAP system to retrieve and update Lender

information. The service should be implemented as a façade to the LEAP

system so as to not expose any of the technical implementation.

CHUMS Underlying Provides an interface to CHUMS system to retrieve and update Case and

Loan data. The service should be implemented as a façade to the CHUMS

system so as to not expose any of the technical implementation.

43

XYZ Loan Selection Process Step – Specification View

44

Exhibit 8 – Description of Example Process Layer is a class diagram that depicts the services, classes stereotyped

as Service Specifications that participate in the Loan Selection Process. No Solution Layer is shown as this process

has no User Interface associated. This process step is initiated nightly. The table below provides a description of

each service specification in the diagram.

Services, Classes Stereotyped as Service Specifications in the Loan Selection Process

Service Specification Layer Description

Loan Selection Process Process Controls, executes and tracks the business process. The Process

Service should be independent of any user interface or solution

design.

Partner Management Capability Controls and tracks Partner (Lender) information.

Risk and Fraud Capability Applies Risk and Fraud algorithms

Insure Mortgages Capability Coordinates and tracks the activities associated with cases (mortgage

insurance).

Lender Core Data Stores, retrieves and validates data relating to the Lender.

Case Management Core Data Stores, retrieves and validates the case data.

LEAP Underlying Provides an interface to LEAP system to retrieve and update Lender

information. The service should be implemented as a façade to the

LEAP system so as to not expose any of the technical

implementation.

CHUMS Underlying Provides an interface to CHUMS system to retrieve and update Case

and Loan data. The service should be implemented as a façade to the

CHUMS system so as to not expose any of the technical

implementation.

ARRTS Underlying Provides an interface to ARRTS system to retrieve and update Case

and Loan data. The service should be implemented as a façade to the

ARRTS system so as to not expose any of the technical

implementation.

SFHEDW Underlying Provides an interface to SFHEDW system to retrieve and update Case

and Loan data for the loan selection process. The service should be

implemented as a façade to the SFHEDW system so as to not expose

any of the technical implementation.

45

XYZ Triage Process Step – Specification Review

46

Exhibit 10 –Core Data Service is a class diagram that depicts the services, classes stereotyped as Service

Specifications that participate in the Triage Process. The table below provides a description of each service

specification in the diagram.

Services, Classes Stereotyped as Service Specifications in the Triage Process

Service Specification Layer Description

Triage Process Process Controls, executes and tracks the business process. The Process

Service should be independent of any user interface or solution

design.

Partner Management Capability Controls and tracks Partner (Lender) information.

Correspondence

Management

Capability Tracks and maintains correspondence which can be physical mailings

or electronic notices.

Insure Mortgages Capability Coordinates and tracks the activities associated with cases (mortgage

insurance).

Homeownership Center Core Data Stores, retrieves and validates the Homeownership Center data.

Case Management Core Data Stores, retrieves and validates the case data.

Authentication Utility Validates that the user credentials are valid.

Authorization Utility Determines what functions a validated user is allowed to execute.

CHUMS Underlying Provides an interface to CHUMS system to retrieve and update Case

and Loan data. The service should be implemented as a façade to the

CHUMS system so as to not expose any of the technical

implementation.

XYZ Deployment View

The following exhibit presents the deployment view of XYZ application. The left side of the figure (boxes in blue)

presents the components deployed at HUD enterprise level – RabbitMQ, MuleSoft ESB server and ICAM for

authentication and authorization. The XYZ application interacts with these components, but they are managed and

maintained by other teams at HUD. The XYZ components are deployed in 3-tiers (Presentation Tier, Business Logic

Tier, and Data Access Tier), which are separated by firewalls for security and to prevent application servers and

database servers from external vulnerabilities.

47

XYZ Application Deployment View

48

The following table provides a list of all the components represented in the deployment view:

Exhibit 14 – Deployment View Component Descriptions

Component Tier Description

Web Server(s) Web tier Apache httpd installed on Linux in web server cluster. The application can

scale up and scale out as traffic increases. Additional web servers are

provisioned as demand increases.

Application Server (XYZ

Tomcat)

App tier Tomcat with XYZ application specific java code and associated libraries

installed on Linux.

Application Server

(Drools)

App tier Tomcat with Drools rules engine installed on Linux.

Application Server

(Activiti)

App tier Tomcat with Activiti BPM engine installed on Linux.

Database Server (Oracle

Master)

Database tier Oracle master database. It stores XYZ specific database schema and also

databases to support Activiti and Drools.

Database Server (Oracle

Slave)

Database tier Oracle slave database (replicates data from Oracle master database in

near real-time).

49

Appendix D: XYZ Logical Data Model

Version 1.0 • September 2020 Page l

The following exhibit provides descriptions for the entities depicted in the entity relationship diagrams (ERD) just

presented. The attribution in the ERD is for informational context purposes only. These have not been finalized and

no descriptions have been provided.

Loan Review Entity List and Descriptions

Entity Name Definition

Lender Lender is a federally qualified financial institution that lends money to a borrower in return for an

obligation to repay. A HUD approved Lender must fully comply with all of the approval and eligibility

requirements specified by HUD FHA in order to be approved to participate in the origination,

underwriting, closing, endorsement, servicing, purchasing, holding, or selling of FHA-insured Mortgages.

Loan Loan (a type of HUD Case) is money lent from a financial institution to a creditworthy borrower(s) over a

specified period of time and at a particular interest rate.

HOC HOC (Home Ownership Center) is a HUD organization that conducts the mortgage insuring processes.

Because the substantive review of a loan occurs after the mortgage is endorsed, Homeownership

Centers (HOCs) must continually monitor lender performance and take necessary action as soon as they

identify underwriting deficiencies.

The objective of the HOC action is to:

• reduce the risk of defaults, and claims to FHA

• improve lender performance, and/or • remove non-complying lenders from the program.

HOCs monitor the performance of lenders by:

• conducting on-site and remote lender reviews

• conducting post endorsement technical reviews (PETRs) of insured loans

• analyzing Mortgagee Performance Reports and Underwriting Report System (URS) reports available

through FHA Connection (FHAC)

• analyzing default and claims data from Neighborhood Watch Early Warning System reports available

through FHAC

• following up on construction complaints or consumer complaints, and

• sharing information among themselves, FHA Headquarters, and the Mortgagee Review Board (MRB).

HOC Loan Review

Personnel

HOC Loan Review Personnel is the staff employed at a Home Ownership Center (HOC) that are qualified

to perform loan reviews.

Loan Review Loan Review is an FHA loan review process to clearly identify which loans pose too great a risk to FHA

and which loans contain errors or other deficiencies.

XYZ Review Type

Code

XYZ Review Type Code is the list of valid values and descriptions that classifies a loan review.

XYZ Defect Code XYZ Defect Code is a fundamental characteristic of loan insurability that impact a loan’s insurability,

credit quality, and compliance.

XYZ Deficiency TBD

Deficiency Letter Deficiency Letter is a letter the Homeownership Center (HOC) must issue to the lender for each loan

receiving a rating of Unacceptable for Mortgage Credit (MC) and/or Valuation/Underwriting (Val/UW).

The letter must:

• identify the specific deficiencies upon which the unacceptable rating was based, and

• provide the lender with 45 days (unless an extension is granted) to submit a response in writing,

including any explanations or documentation explaining the decision to approve the mortgage. LI lenders

are required to submit their responses electronically within 10 business days.

Document

Request

Document Request is formal request to receive a document in support of a case.

Version 1.0 • September 2020 Page li

Entity Name Definition

XYZ Deficiency

Letter

XYZ Deficiency Letter identifies a deficiency associated with a Deficiency Letter sent by a HOC (Home

Ownership Center) to a Lender.

Test Case Review Test Case Review is a type of FHA loan review whereby a Direct Endorsement (DE) lender applying for

unconditional approval must submit 15 mortgage loan applications, aka test cases, for review by the

Homeownership Center (HOC). The test cases may vary by loan type, and must represent

expected underwriting situations.

Post Endorsement

Technical Review

Post Endorsement Technical Review (PETR) is a type of FHA Loan Review that is performed on selected

cases to evaluate several factors, including:

1. The risk that loans represent to FHA’s insurance funds

2. The lender’s compliance with FHA’s underwriting and documentation requirements.

eCase Binder eCase Binder is a subset of the lenders “loan file” and is sent to a HUD Home Ownership Center (HOC)

where Reviewers and Endorsement Clerks check the paperwork to determine if the mortgage meets the

eligibility requirements for insurance and that all required documents and signatures are present. After

the lender underwrites and closes the loan, lenders must submit information about the loan organized in

a Case Binder (the eCase Binder) in an FHA required stacking order.

Review Selection

Source Code

Review Selection Source Code is the list of valid values and descriptions that describe the method used

to select a loan for review.

List of Valid Values:

1. Manual Selection

2. Early Payment Default (EPD)

3. New Endorsements Risk Scoring Algorithms - different algorithms for HECM and Forward

4. Random Selection - based on sample sizes set by the National Review Coordinator (NRC)

5. New Endorsements Sample Selection -based on additional lender or underwriter selection rules

6. LDP

7. SAMS

8. CAIVRS; Credit Alert Interactive Voice Response System (CAIVRS) Authorization function lists

information on a party such as Lender or Underwriter past default, claim, judgment, and foreclosure

records on government loans.

XYZ Status Code TBD

Loan Review

Personnel

Loan Review Personnel is the HUD employee that has been trained in the Loan review process and is

qualified to conduct loan reviews.

HOC Supervisor HOC (Home Ownership Center) Supervisor is a HUD employee that performs management tasks for the

HUD employees assigned to a HOC.

SFH Loan Type

Code

SFH Loan Type Code is the list of valid values and descriptions that classify a Single Family Housing loan.

XYZ Defect

Category Code

TBD

XYZ Defect

Category

TBD

HOC Review HOC Review is the assignment of Home Ownership Center (HOC) personnel to loan review.

Loan Rating Code Loan Rating Code is represents the risk of a loan's financial stability.

For both the Mortgage Credit (MC) and Valuation Underwriting (Val/UW) of a loan, the reviewer must

enter a rating.

Version 1.0 • September 2020 Page lii

Entity Name Definition

XYZ Review Level

Code

XYZ Review Level Code is the character that represents

List of Valid Values:

I - Initial - The initial review level is completed for the first PETR of a loan. The initial review level may be

completed by Homeownership Center (HOC) staff or by a contractor.

Q - Quality Control - The Quality Control (QC) level is used to enter the results of QC reviews of the initial

reviews performed by contractors.

S - GTR / Supervisory - The Government Technical Representative (GTR)/Supervisory review level is used

to confirm or revise changes in ratings made at the QC level. The GTR/Supervisory review level may be

completed by a PUD supervisor or designated senior PUD staff

A - Additional Review - The “Additional Review” level of review is used to enter changes in ratings based

on lender responses to ratings from earlier level reviews, or otherwise confirm or change ratings from

earlier review levels. The Additional Review level is also used to change the Unacceptable rating to

Mitigated in either or both “Val/UW” or “MC” rating categories.

HOC Employee

Role Code

HOC (Home Ownership Center) Employee Role Code is the character that represents the job that a HOC

employee perform during a loan review process.

Lender Response

Letter

Lender Response Letter is a lender's answer to a deficiency letter that the lender receives as a result of a

deficiency discovered during a loan review.

HOC Team Lead HOC (Home Ownership Center) Team Lead is a HUD employee who performs leadership tasks for the

HUD employees assigned to a team.

HOC Loan

Reviewer

HOC (Home Ownership Center) Loan Reviewer is a HUD employee who is qualified to perform loan

reviews. This entails providing objective assessments for credit in order to identify potential loan

problems and ensure compliance with established loan policies and federal regulations.

HOC Review Team HOC (Home Ownership Center) Review Team is the association of a Loan Reviewer assigned to a specific

HOC to a specific team along with the HOC Team Leader of the Team.

Loan Reviewer

Skill Matrix

Loan Reviewer Skill Matrix is a record of a loan reviewer's expertise and qualifications. This enables the

case assignment process to assign the case load accordingly.

HOC Reviewer

Availability

HOC (Home Ownership Center) Reviewer Availability is a schedule of hours that a loan reviewer has

available to perform loan reviews. This is used to determine the case load for loan reviewers.

Source and Cause

Code

Source and Cause Code is

Source and Cause

Defect

TBD

Defect Source

Code

Defect Source Code is

Defect Cause Code TBD

Version 1.0 • September 2020 Page liii

Appendix E: Agile Development

HUD OCIO has adopted an agile approach for software development to reduce the risk of project failure,

and to assure that the delivered system performs as it is intended. These methods have repeatedly been

shown to:

 Improve time-to-mission-value

 Reduce project risk

 Reduce cost

 Improve visibility

 Better adapt to changing needs

Agile approaches use an iterative, incremental process that is characterized by small, frequent releases

developed in close collaboration with the customer. These practices provide tight feedback loops and

frequent opportunities for course correction. Agile approaches are consistent with “modular development” or

“modular IT” as defined in OMB. Modular development of IT capabilities requires that programs deliver

functionality in increments, generally of no longer than 6 months each. Agile development provides a best-

practices way of conducting such incremental delivery.

The greatest process risk for agile teams is simply following a set of mechanical steps or “ceremonies” rather than

adhering to agile values and principles and adopting the agile mindset. Teams that do this are likely to lose the

empirical and adaptive benefits of agile, and hence lose the natural controls that are inherent in the agile

approach.

Therefore, understanding and practicing the core values and principles of agile are the primary means of obtaining

the benefits of agile. The essence of agile methods is the use of an “inspect and adapt” paradigm: agile projects

practice continuous improvement of processes, requirements, and design.

Agile Practice (s) – the minimum agile practices required of all agile teams include the following:

1. Frequent Delivery – Projects shall deliver usable product to end users at least quarterly.

2. Time-boxed Iterations – Projects shall adopt a fixed-length iteration (between 2-4 weeks) as their

standard cadence for planning, completing, and demonstrating potentially-deployable functionality.

3. User Stories – Project teams shall employ User Stories as the basic unit of planning, executing, and

tracking their work, with User Stories being defined as small, independent, and testable units of

functionality. Note that User Stories under this definition are not necessarily expressed in classic user

story format (“As a <who> I want to <what> in order to <why>”). Indeed, many formats are possible for

requirements (for example, samples of reports for BI projects) as long as they are small, independent, and

testable.

4. Product Owner – Each project shall have a distinct individual representing the business involved with the

team, with the authority to make timely decisions regarding user story development, prioritization, and

acceptance.

5. Release Planning – Each project shall conduct a release planning exercise culminating in a release planning

review (RPR) and a standard set of deliverables prior to commencement of work on a release.

Version 1.0 • September 2020 Page liv

6. Iteration Reviews – Project teams shall conduct a facilitated review at the end of the each iteration to

demonstrate and/or test functionality and to solicit feedback from the project’s stakeholders.

7. Retrospectives – Project teams shall hold a facilitated meeting at the end of each iteration to reflect on

the team’s performance and identify opportunities for improvement.

8. Continuous Testing – Project teams shall test User Stories up to and including in a staging environment

during the iteration in which those stories are developed.

The practices discussed in this appendix represent the foundational practices that all projects must adopt to

achieve a minimum level of agility within HUD. However, project teams are not limited by this and are encouraged

to adopt other practices that advance the goal of continuous deployment.

Principles: The principles are designed to guide how HUD implements agile processes and represents the

foundational principles that all projects must adopt to achieve a minimum level of agility within HUD

Lean Thinking

Lean emphasizes seeing the whole (including the end-to-end view of the delivery pipeline), and is not constrained

by organizational boundaries and promotes delivering as fast as possible. Lean also emphasizes the “amplification

of learning” through techniques, such as retrospection and mentoring, in order to increase the effectiveness of

people, and therefore the speed at which work can be done.

Lean supports the concept of amplified learning, through mentoring and focused efforts to have people learn by

doing with appropriate supervision. Agile also promotes the concept of a sustainable work pace, which promotes

quality and excellence because people have the energy to pay attention to doing things right instead of rushing

things through. This means that work must be planned in a way that does not over-promise, and that is based on

actual measurement of work capacity instead of aggressive externally imposed deadlines. Rushed work leads to re-

work, and does not save time in the long run.

Transparency

Agile requires that people work across business functions. For example, software cannot be developed in an agile

manner unless architecture, testing, security, and release management all collaborate to define a way to perform

all of those functions in parallel, in a just-in-time, collaborative manner, rather than one group handing things off

to the next in sequence. OIT is defining a new processes that crosses business functions, but such processes must

be adaptable, and as such, they will never be fully defined. The organization must rely on its staff to evolve

processes over time. This requires being highly proactive, with an emphasis on reaching across silos to achieve an

objective and not feeling constrained by rigid processes.

For this level of collaboration to be successful, management must provide a safe environment in which people are

encouraged to reach out, across business functions, and are not punished for going directly to the staff they need

to talk to. Those who reach out should be encouraged, not admonished. This is a significant change from the

practices of most established hierarchical organizations, but it is a norm for innovative organizations. Proactiveness

and collaboration are strong drivers of grass-roots innovation, and innovation is one of the strategic goals of OCIO.

Along with normalizing change, agile stresses transparency through continual delivery of output. By designing

project activities so that every activity has a demonstrable result that the user can understand, and that is easily

recognizable as tangible progress, one is able to make sure that a project stays on course. This greatly reduces risk

because erroneous approaches become evident very quickly when the output of work is demonstrated.

Continuous Improvement

Version 1.0 • September 2020 Page lv

In an ever-changing world, business processes need to evolve continuously. This calls for regular reflection and

process improvement. Continuous delivery advocates that the best way to address a recurring process problem is

to address it sooner – right at the outset of the process, if possible – and that will focus attention on it and get it

solved. Both lean and agile advocate identifying work that does not add value and eliminating wasteful activity.

Measurement is important for continuous improvement because measurement often shows where problems

really manifest. Measurement also helps to determine what the organization’s true capacity is for handling work.

Measurement is therefore a critical enabler for agility.

Mission-Focused and Results Oriented

HUD must be responsive to direction from Congress and other key stakeholders, and be ready to implement policy

changes rapidly. The implementation of policy cannot be held up by IT impediments. Continuous delivery

emphasizes the creation of a repeatable, reliable pipeline process for building and releasing software, and the

automation of almost everything in that process pipeline. Agile methods emphasize the delivery of value

frequently. At a tactical level, being mission-focused translates into being results oriented. Agile promotes a focus

on tangible outcomes, as opposed to progress against a plan. All business processes and work should be defined

and conducted in a manner that emphasizes results, rather than tasks. Completion of a task is not evidence of

progress, unless it produces something that can be assessed as tangible progress, and ultimately, that it advances

the HUD mission. Continuous delivery advocates the concept that “Done means released”, and this means that a

task to create an artifact (i.e., software, a business procedure, a document) should never be considered done until

it has actually been put into use or operationalized.

Focused on Execution Excellence

Execution excellence means making time to do something right so that it does not cause problems later. Lean

promotes the concept of building integrity into a business process, so that the process is self-correcting and does

not require manual intervention. This frees the organization to focus its resources on new capabilities. Quality is

extremely important in things that will endure: business processes, software, and any artifact that will be used

repeatedly. Continuous delivery is enabled by software development processes that promote getting things right

continuously, rather than catching errors later. Quality promotes repeatability. Automation also promotes

repeatability, and therefore promotes quality.

Welcome Change throughout the Development Process

The strategic goal of responding quickly to mission needs requires allowing for changes to requirements at any

time rather than creating rigid plans. Change is disruptive, and it is prudent to think ahead to minimize change; but

responding to change is also essential in being responsive to the changing needs of the business, rather than plying

ahead with an obsolete plan.

It is not easy to allow for change. It often means that there is work that must be discarded, or that many decisions

must be re-visited. But change also means learning. If software is built and the users realize that it needs to

change, then the positive view is that the users now have a clearer idea of what is really needed. Agile proposes

that expecting users to know exactly what they need before they see it is not realistic. The strategies promoted by

the agile and lean communities are to (a) allow for change, and (b) to manage risk by releasing small increments at

a time, thereby containing change to those small increments. Lean also promotes the concept of making decisions

at the last responsible moment; that is, to postpone a decision until it can be postponed no longer.

Importance of Security and Reliability

HUD is the steward of our nation’s Housing data that is both critical and sensitive. It also provides services that are

used by the public, and the public's expectations for reliability and security are high. These services affect people's

Version 1.0 • September 2020 Page lvi

lives in a dramatic way, and thus the organization cannot afford to have these services be fragile, risky, unreliable

or insecure. As mentioned earlier, lean thinking promotes the concept of building integrity into a process or

system, rather than creating a substandard process and cleaning up later. For software development, this means

building security into an application from day one. It means testing for security throughout the development cycle,

not at the end. It means testing for error cases in the same way: continuously, rather than as an afterthought.

Informed by Architecture

Architecture consists of a set of decisions and models about how things should work. As such, architecture informs

decision-making at all levels: at a business level (business architecture), and at a technical level (technical

architecture). Architecture can be very ineffective and burdensome if it is allowed to operate in a manner that is

very disconnected with operations and projects.

What is needed is effective architecture that is solution oriented and that operates in an issue-focused manner,

helping the organization to find the right path as needs are considered and implemented. This type of architecture

is deeply immersed in solution efforts, and only spends its time on issues that have an actual impact on the

business. Most importantly, it operates collaboratively, working with development teams to help them to consider

issues and make decisions and choices about technologies and solution approaches. In other words, it shares its

knowledge and helps people, rather than focusing its work around documents.

Version 1.0 • September 2020 Page lvii

Appendix F: Acronym and Definitions

This subsection describes all terms and abbreviations used in support of the development of this document and

critical to the comprehension of its content that are not contained in the Office of the Chief Information Officer

(OCIO) Terms, Acronym and Definitions List.

Below is a list of Acronyms and Definitions contained in this document:

Acronym Definition

AARTS Approval/Recertification/Review Tracking System

API Application Program Interface

APPS Active Partners Performance System

CARS Common Application Relational Schema

CHUMS Computerized Homes Underwriting Management System

CISO Chief Information Security Officer

COTS Commercial Off-the-Shelf

DTaaS Development and Test as a Service

EA Enterprise Architecture

EAI Enterprise Application Integration

EDW Enterprise Data Warehouse

ESB Enterprise Service Bus

ETA Enterprise Technical Architecture

FHA Federal Housing Administration

HECM Home Equity Conversion mortgages

HOC Home Ownership Center

HUD The Department of Housing and Urban Development

JMS Java Messaging Service

LEAP Lender Electronic Assessment Portal

XYZ Loan Review System

OCIO Office of the Chief Information Officer

OIG Office of Inspector General

PII Personally Identifiable Information

POJO Plain Old Java Object

PPM Project Portfolio Management

SFHEDW Single Family Housing Enterprise Data Warehouse

SLAP Service Layered Architecture Profile

SOA Service Oriented Architecture

UML Unified Modeling Language

VA (Loans) Veteran Affairs

VM Virtual Machine

